Categories
Cloud Computing

Updated Pricing For The SynchroKnot License

The new price for SynchroKnot’s base license for up to 64 cores for any X86_64 system is €1500 [Euro]. We were encouraged to raise the price considering the overall monetary gain:

  1. Substantial Manpower Reduction
  2. Hardware and Software License Cost Reduction
  3. Total Complexity Reduction
  4. The cost of a SynchroKnot license is substantially lower than even the licenses of individual parts/components used in the cloud & data center today.
  5. Ease of bringing about a rapid transformation without expensive, time-consuming consultations and project management.
  6. SynchroKnot is its own institution of technology beyond light years. The SynchroKnot product is beyond comparison to the inefficient & expensive parts/components like those offered by companies like Microsoft, VMware, RedHat, IBM, Amazon, Google, Oracle, Cisco, Juniper and many others all put together, many of whom have lost the most vital ingredient for doing business – Trust –

Important: Be sure to check the updated blacklist under the license section.

Categories
Cloud Computing

The Internet of Spatial Defined Systems with SynchroKnot

What is the Internet of Spatial Defined Systems? and Where does fit in with IoT?

We have heard of Cloud Computing, Data Centers, Edge computing and their numerous expansions and variations. However for the most part the architectures used underneath these Infrastructures and the technologies governing them remain centralized in terms of location and disparate in terms of hardware + software used at that central location.

For example, you may have your cloud computing infrastructure located at a centralized data center. This cloud computing infrastructure is made of up disparate hardware, namely servers, redundant switches & routers, storage [SAN/NAS] and load balancers etc., and run the standard virtualization software like OpenStack, VMware, Hyper-V and so on.

So, in a sense, this standard and expensive business model has locked itself into a myriad of traps. Some of the most important traps are scalability, complexity, security, manageability, maintenance, vendor lock-ins, maintaining of multi-tiered separate teams, time-consuming fixes to problems, and much more.

One method out of this architectural quicksand is to look at the novel approach of the wonderful research done within the IoT industry and adapt it to the systems architecture in a way such that you should be able to use all kinds of systems from embedded devices to desktops, workstations and servers across both wired and wireless networks transparently.

In other words, building a decentralized, automatic cloud and data center which can be rapidly scaled globally within the budget and performance requirements of the end users. Plus, it must have the ability to be kept at locations other than just a data center. Some of the examples of locations are offices, cubicles, basements, apartments, closets, fiber optic hubs, 5G base stations, shops and much more.

This is where SynchroKnot software does it all and takes care of everything. SynchroKnot has made it easy with its software. It installs in minutes and does much more than what the centralized cloud computing technologies and data center put together can do today and what they aspire to be able to do in the future. You can transform any server, workstation, desktop or embedded device into a decentralized cloud or data center [We call it a data decenter].

Apart from just merely de-centralizing, with SynchroKnot, anyone can sell their full or under-utilized hardware resources using Bitcoin, and without involving centralized financial institutions/payment processors.

To alleviate the concerns and criticisms directed towards IoT, SynchroKnot has multifarious real-world security measures built into the software, which are aimed at substantially improving the overall security of decentralized systems.

For SynchroKnot end users, its unique Satellite Tree Protocol allows the inter-connectivity of heterogeneous devices over wired and wireless networks, all automated and fault-tolerant without the need to manage any aspect. This unique network component eliminates the need for physical switches and routers.

There are a multitude of components that you can choose from to build and enhance your Internet of Spatial Defined Systems!

For more information, please visit synchroknot.com

Categories
Cloud Computing

Flood Ping Fun with 24 Switches in a Ring Topology!

This demonstration video shows a total of 24 Ethernet switches in one large loop [ Ring Topology ] with Satellite Tree Protocol enabled and multiple switches being brought down and up every 10 seconds while Flood Pings are underway from multiple directions!

The SynchroKnot Satellite Tree Protocol an enhancement to the IEEE standard [ 802.1D (1998|2004), 802.1W ] while keeping the core semantics in place, and is a part of SynchroKnot Spatial Defined Networking.

Satellite Tree Protocol is the core networking component of the SynchroKnot Cloud Computing and Data Center Decentralization software which transforms any server, workstation, desktop or embedded device into a decentralized cloud or data center [data decenter].

The object is to ascertain the automatic and fast network resilience [root bridge failure, failover and failback], fault tolerance and intelligent path selection capabilities amidst very low hardware resources.

This demonstration setup has been purposefully done with an illogical setting so as to test how it can perform in extreme circumstances.

Mininet is used for actual network emulation.

You may also notice results of prior flood ping tests in the demonstration video before the current one gets underway.

We would like to assume that the outcome result with 0% [zero percent] packet loss with 24 switches is a bit much for our logical mind to digest and would love to blame the ping utility with a faulty flood ping option 🙂 ….. of course upon deeper contemplation you may develop an insight that differs.

■ In actual use case scenarios, with our unique cabling technique in a 5 X 5 2-D Torus topology, one may generally not have more than one or two hops! 24 nodes are used for purposes of extreme testing in difficult case scenarios.

■ Simple machine with 2 cores [4 threads] Intel Core i7-6500U Processor with 8 GB RAM. Alongside, a few running virtual machines not a part of this demo were used in the background to consume CPU and memory resources, leaving fewer CPU cycles and memory for Satellite Tree Protocol and the 24 nodes with Mininet. [This demonstration video was also recorded on the same machine and thus used additional CPU cycles and memory.]

■ Side Note : Spanning Tree Protocol and Rapid Spanning Tree Protocol generally respond to failures by recovering in about 40 to 300 seconds or more depending upon the timers and topology [ RSTP may recover faster in some scenarios ]. This is with the regular vendor / standards suggested timers found in most switches in standard setups today. One can increase the network diameter [ i.e number of switches between two endpoints ] to a maximum of about 18. This however will substantially increase the recovery time, alongside most likely put the timers of switches out of sync. Your mileage may vary. Please do your own research.

■ Caution : If you try a similar setup with standard physical Ethernet switches [Cisco, Juniper etc] then you are solely responsible if you brick your appliance(es). We cannot help you recover them.

In brief, the SynchroKnot software transforms any server, workstation, desktop or embedded device into a decentralized cloud or data center [data decenter]. You can use any commodity X86_64 Desktop/Workstation/Server/Embedded device and connect them to eachother. There is no need to purchase physical or virtual switches and routers or any of their licenses [Eg. Cisco, Juniper etc].

This demonstration video is available at the link below and also on synchroknot.com under the the demo section:

■ Spatial Satellite Tree Protocol showing Root Bridge failure, failover, failback with Flood Ping from multiple directions

More information is available at:
■ synchroknot.com

Categories
Cloud Computing

Cloud Computing Decentralization Software

We have heard of Cloud Computing, Data Centers, Edge computing and their numerous expansions and variations. However for the most part the architectures used underneath these infrastructures and the technologies governing them remain centralized in terms of location and disparate in terms of hardware + software used at that central location.

For example, you may have your cloud computing infrastructure located at a centralized data center. This cloud computing infrastructure is made of up disparate hardware, namely servers, redundant switches & routers, storage [SAN/NAS] and load balancers etc., and run the standard virtualization software like OpenStack, VMware, Hyper-V and so on.

So, in a sense, this standard and expensive business model has locked itself into a myriad of traps. Some of the most important traps are scalability, complexity, security, manageability, maintenance, vendor lock-ins, maintaining of multi-tiered separate teams, time-consuming fixes to problems, and much more.

One method out of this architectural quicksand is to look at the novel approach of the wonderful research done within the Blockchain and IoT industry and adapt it to the systems architecture in a way such that you should be able to use all kinds of systems from embedded devices to desktops, workstations and servers across both wired and wireless networks transparently.

In other words, building a decentralized, automatic cloud and data center which can be rapidly scaled globally within the budget and performance requirements of the end users. Plus, it must have the ability to be kept at locations other than just a data center. Some of the examples of locations are offices, cubicles, basements, apartments, closets, fiber optic hubs, 5G base stations, shops and much more.

This is where SynchroKnot software does it all and takes care of everything. SynchroKnot has made it easy with its software. It installs in minutes and does much more than what the centralized cloud computing and data center technologies put together can do today and what they aspire to be able to do in the future.

You can transform any server, workstation, desktop or embedded device into a decentralized cloud or data center and connect them to eachother in minutes!

Apart from just merely de-centralizing, with SynchroKnot, anyone can sell their full or under-utilized hardware resources using Bitcoin, and without involving centralized financial institutions/payment processors.

SynchroKnot also has multifarious real-world security measures built into the software, which are aimed at substantially improving the overall security of decentralized systems.

More information is available under the Overview section.